Agent-Based Grid Load-Balancing

Daniel P. Spooner University of Warwick, UK Junwei Cao NEC Europe Ltd., Germany

Outline

- Grid Computing & Middleware
- Agent-Based Methodology
- Distributed Service Discovery
- Grid Load-Balancing
- Experimental Results
- Conclusions & Future Work

Grid Computing

- Computational Grids blueprint for a new computing infrastructure
 - Data/Service/Community Grids large-scale resource sharing in VOs
 - Grid/Web Services distributed system and application integration

Grid Middleware

- Resource Management & Scheduling
- Information Services (Monitoring & Discovery)
- Data Management and Access
- Application Programming Environments
- Security, Accounting, QoS

Condor, LSF, Ninf, Nimrod, Globus, Legion, DPSS, Java/Jini, CORBA, Web Services,

Grid Resource Management

Agent-Based Methodology

An agent is:

- A local grid manager
- An user agent
- A broker
- A service provider
- A service requestor
- A matchmaker

Local Management

Performance Prediction

- Task models
- Hardware models
- FIFO Algorithm Genetic Algorithm
- Heuristic & Evolutionary
- Near-optimal on makespan, deadlines and idletime.

2ⁿ-1

Service Discovery

- Pure data-pull
- No advertisement
- Full discovery
- Efficient when service change more quickly

- Pure data-push
- Full advertisement
- No discovery
- Efficient when requests arrive more frequently

Centralised, not applicable for grid computing!

Optimisation Strategies

- Configurable data-pull or data-push
- Agent hierarchy
- Multi-step advertisement & multi-step discovery
- Efficient when frequencies of request arrivals and service changes are almost the same

Distributed! balancing between advertisement and discovery!

Agent Implementation

Load Balancing Metrics

- Total makespan
- Average advance time of task execution completions (required deadline - actual task completion time)
- Average processor utilisation rate (busy time / total makespan)
- Load balancing level (1 mean square deviation of processor utilisation rates / average processor utilisation rate)
- Total number of network packages for both advertisement and discovery

Experiment Design

Task Execution

200

Both GA and agents contribute towards the improvement in task executions.

Experiment Number

Resource Utilisation

Less powerful S11 & S12 benefit mainly from the GA.

More powerful S1 & S2 benefit mainly from agents.

Load Balancing

The GA contributes more to local grid load balancing.

Agents contribute more to global grid load balancing.

Total Makespan

The centralised pure data-pull can always achieve the best results

Distributed agents with the hierarchical model can also achieve reasonably good results

Network Package

The network overhead for the pure data-pull strategy to achieve better results is very high.

Distributed agentbased service advertisement and discovery can scale well.

Conclusions

- An multi-agent paradigm provides a clear high-level abstraction of grid resource management system.
- Distributed service advertisement and discovery strategies can be used to improve agent performance.
- Agent-based framework is scalable, flexible, and extensible for further enhancements.