Very Lightweight Agents for Reactive, Fault-Tolerant Real-Time Systems

Jae C. Oh, Madhura S. Tamhankar, and Daniel Mossé

Department of Electrical Engineering and Computer Science
Syracuse University
Department of Computer Science
The University of Pittsburgh
Keywords for Motivation

- Large-scale
Keywords for Motivation

- Large-scale
- Real-time
Keywords for Motivation

- Large-scale
- Real-time
- High-speed data acquistition
Keywords for Motivation

- Large-scale
- Real-time
- High-speed data acquisition
- Fault-tolerant
Keywords for Motivation

- Large-scale
- Real-time
- High-speed data acquisition
- Fault-tolerant
- Adaptive
Keywords for Approach and Goals

- Multiagent
Keywords for Approach and Goals

- Multiagent
- Very Lightweight
Keywords for Approach and Goals

- Multiagent
- Very Lightweight
- Fast
Keywords for Approach and Goals

- Multiagent
- Very Lightweight
- Fast
- Small footprint
Keywords for Approach and Goals

- Multiagent
- Very Lightweight
- Fast
- Small footprint
- Adaptive
Keywords for Approach and Goals

- Multiagent
- Very Lightweight
- Fast
- Small footprint
- Adaptive
- Intelligent
BTeV triggering and data acquisition system.
Level 1 Pixel Trigger

Functions performed by the DSP Farm:
- track & vertex reconstruction
- impact parameter calculation
- generate data for GL1

Figure 0: Adopted from BTeV-doc-308-v1 (Gottschalk)
BTeV triggering and data acquisition system

- About 2,500 DSPs (L1)
 - Fast data acquisition
 - Fault monitoring
 - Fault-tolerant
 - Adaptive to failure
 - Run physics applications

- About 2,500 Linux machines (L2/L3)
 - Process data from lower level
 - Run applications (trigger application, reconstruction, analysis, others)
 - Fault monitoring
 - Fault-tolerant
 - Adaptive to failure

UIUC’s ARMOR

Event-loop of a physics application

Physics Application

Read events

Check (data corrupt?)

Physics Algorithm

Check output (size, etc)

Write

DMA

Check

Time to read

To much data? Bad input data? Logic error?
Very Lightweight Agents

- Monitor hardware integrity
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
- Reactive
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
- Reactive
- Proactive
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
- Reactive
- Proactive
- Fast
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
- Reactive
- Proactive
- Fast
- Small footprint
Very Lightweight Agents

- Monitor hardware integrity
- Monitor software integrity
- Intelligent and Adaptive (e.g., error prediction, correction)
- Cooperative
- Reactive
- Proactive
- Fast
- Small footprint
- Hierarchical
Envisioned VLA hierarchy (Preliminary)

- **Regional L1 Manager (1)**
 - TimeSys RT Linux
 - Regional Manager VLA

- **Global Manager**
 - TimeSys RT Linux
 - Global Manager VLA

- **Regional L2/L3 Manager**
 - TimeSys RT Linux
 - Regional Manager VLA

- **Low-Level VLA**

- **Fundamental Units**
 - **Crate Managers (20)**
 - TimeSys RT Linux
 - Crate Manager VLA
 - **Farmlet Managers (16)**
 - TimeSys RT Linux
 - Farmlet Manager VLA
 - **DSPs (8)**
 - TI DSP BIOS
 - Low-Level VLA
 - **Linux Nodes (320)**
 - RH 7.x Linux
 - RH 7.x Low-Level VLA
VLA design theoretical background

- Brooks’ subsumption architecture
- designed for robot controls
- Small reactive Augumented Finite State Machines – no full-blown explicit knowledge representation
- Higher level “subsumes” lower level control when appropriate
Intelligence “emerges” when simple components interact

BTeV/RTES deals with real hardware components (robot control systems too)

Realtime managements, Fault-tolerant, small footprint, fast, adaptability
Rule subsumption

Function action (p: P): A
var fired: P(R)
var selected : A
begin
 fired := \{(c, a)\mid (c, a) \in R \text{ and } p \in c\}
 for each \((c, a)\) \in fired do
 if \(\neg(\exists (c', a') \in fired \text{ such that } (c', a') \prec (c, a))\) then
 return a
 end-if
 end-for
 return null
end function action
Suggested Modifications to the SA

- The division between layers is too rigid: let layers to be able to communicate if needed while keeping the communication traffic minimal.
- Allow blackboard architecture: VLAs can communicate via this facility.
- Introduce proactivness in the subsumption architecture.
- Inter-VLA subsumption and Intra-VLA subsumption: hierarchy of VLAs
The notion of virtual sensors

- When a hardware sensor fails, a virtual sensor can act
- Temporary feed from history (extrapolation)
- Temporary feed from nearby sensors
- Usefulness in the RTES environment – yet to be determined
Virtual sensor with VLA

To Global Level 1

To Farmlet manager

Physics application

VLA

Virtual sensor

DSP input

From Farmlet manager (history)

From Sensors
Subsumption Rules for Farmlet VLAs

FR1 Condition: no communication with a L1-level VLA for a certain period of time. Possible causes: The DSP may be down; Com-link may be down; The DSP may be overloaded. Actions: Ping the DSP; reset the DSP; reboot the DSP.

FR2 Condition: I/O error or File I/O error when accessing a history file. Possible causes: File doesn’t exist; Disk full Invalid file pointer; Communication problem with a file server. Actions: Notify higher level entities including human operator.

FR3 Condition: the first start-up after a power loss. Actions: Perform data and hardware integrity tests.

FR4 Condition: Received data integrity problem notification from a lower level VLA. Actions: Find the hardware that causes problem; Activate the virtual sensor and channel history data to the virtual sensor, if appropriate.

FR5 Condition: The Farmlet CPU utilization drops below a certain level. Action: Run additional diagnostic procedure, communicate with other VLAs, perform preventive actions, and check not-so-critical conditions.

FR6 Condition: Timer interrupt for periodic checking is received. Action: Perform the required procedure.

Priority $FR3 \prec FR1 \prec FR4 \prec FR2 \prec FR6 \prec FR5$.

Rules for L1 level VLAs

L1R1 Condition: Event data corrupted. Action: report to the Farmlet manager. Check hardware.

L1R2 Condition: Too much event data. Actions: report to Farmlet manager.

L1R3 Condition: Too little data. Actions: report to Farmlet manager. Note that the Farmlet manager may activate corresponding virtual sensor.

L1R4 Condition: No input from sensors Actions: report to the Farmlet manager. Test hardware integrity.

L1R5 Condition: Overloaded DSP. Actions: report to the Farmlet manager.

L1R6 Condition: Timer interrupt for periodic testing task has been received. Action: Perform the test.

L1R7 Condition: Certain additional CPU cycles can be spared for the VLA. Action: Run additional diagnostic procedure, communicate with other VLAs, perform preventive actions, check not-so-critical conditions, etc.

Priority $L1R4 < L1R5 < L1R1 < (L1R3 = L1R2) < L1R6 < L1R7$.
Additional CPU cycles can be spared for the VLA --> Run additional diagnostic procedure, check not-so-critical conditions

L1R6: Timer interrupt for periodic testing task has been received --> Perform the test

L1R2: Too much event data (notified from the physics application after throwing away certain percentage of the data) --> Report to Farmlet manager

L1R3: Too little data. (notified from the physics application after attempting to extrapolate) --> Report to Farmlet manager

Overloaded DSP --> Report to the Farmlet manager

L1R5:

L1R1: Event data are corrupted (notified from the physics application) --> Report to the Farmlet manager. Investigate if a hardware problem

Report to the Farmlet manager.

L1R4: No input from sensors (notified from the physics application. The physics application may not have been able to do anything) --> Report to the Farmlet manager. Test hardware integrity

To little data. (notified from the physics application after attempting to extrapolate)

To much event data (notified from the physics application after throwing away certain percentage of the data)
VLA Prototypes

- Several prototypes built for an experimental DSP board
- Two TI DSPs on board
- Need more DSPs to study interactions among VLAs
- Currently, building VLAs for a DSP board with 8 DSPs.
- Please visit the poster presentation session for details of prototypes
Conclusion

- The BTeV environment calls for fast, fault tolerant, adaptive agents
- Concept of VLA is being investigated
- Based on the subsumption architecture
- Several pre-prototypes have been built (limited rules and actions)